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A CLASSIFICATION AND EXAMPLES
OF RANK ONE CHAIN DOMAINS

H. H. BRUNGS AND N. I. DUBROVIN

ABSTRACT. A chain order of a skew field D is a subring R of D so that d € D\R
implies ! € R. Such a ring R has rank one if J(R), the Jacobson radical of
R, is its only nonzero completely prime ideal. We show that a rank one chain
order of D is either invariant, in which case R corresponds to a real-valued
valuation of D, or R is nearly simple, in which case R, J(R) and (0) are the
only ideals of R, or R is exceptional in which case R contains a prime ideal ¢
that is not completely prime. We use the group M(R) of divisorial R-ideals
of D with the subgroup H(R) of principal R-ideals to characterize these cases.
The exceptional case subdivides further into infinitely many cases depending
on the index k of H(R) in M(R). Using the covering group G of SL(2,R) and
the result that the group ring T'G is embeddable into a skew field for T a
skew field, examples of rank one chain orders are constructed for each possible
exceptional case.

INTRODUCTION

A subring R of a skew field D is called total if d in D and d not in R implies’
that the inverse d—! is contained in R. It follows that for such rings R the'lattice of
right ideals as well as the lattice of left ideals is linearly ordered by inclusion; R is a
chain domain. Conversely, any chain domain R is Ore and is a total subring of its
skew field of quotients D. The total subrings of fields are exactly valuation rings,
corresponding to valuation functions into linearly ordered groups. In particular, if
we take nontrivial subgroups G of the additive group (R, +, <) of the reals as value
croups, then we obtain the commutative valuation rings of rank one. Such a ring
can also be characterized as a maximal subring of a field, or as a valuation ring with
exactly one nonzero prime ideal. In the non-commutative case we must distinguish
hetween prime ideals and completely prime ideals: An ideal B # R of a ring R is
prime if J1Jo C B implies [}y C Bor I; C B for ideals I) and I of R. If ab € B
mplies o € B or b € B for elements a,b in R, then B is called completely prime.
A total subring R of a skew field D will be called a chain domain of rank one if R
has exactly one nonzero completely prime ideal. This ideal will then be J(R), the
Jacobson radical of R.
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We prove in Theorem 1.9 that a rank one chain domain R is either invariant,
i.e., all one-sided ideals are two-sided, or it is nearly simple in which case R, J(R),
and (0) are its only ideals, or R is exceptional in which case R contains a prime
ideal that is not completely prime. The exceptional rank one chain domains are
classified further with the help of the group M(R) of divisorial R-ideals and the
subgroup H(R) of M(R) of principal R-ideals. The lattice of two-sided R-ideals is
then determined by the index k of H(R) in M(R), and we say that R is exceptional
of type (Ci).

These results are proved in the more general case of cones P in groups (& where
a cone P of G is a subsemigroup of G so that g € G\P implies g~! € P.

That rank one chain domains are either invariant, nearly simple or exceptional
was proved in [4]. Invariant rank one chain orders of D correspond to valuation
functions from D* into (R,+, <). Nearly simple chain domains were constructed
in [8], [16], [5] and [3]. The construction of exceptional rank one chain domains,
however, appeared to be elusive even though Posner in [19] hinted that such rings
might exist, and the classification of hypercyclic rings by Osofsky in [18] is complete
only if such rings do not exist. I. N. Herstein had considered the problem and this
existence problem was also encountered in [14]. We construct in this paper excep-
tional rank one chain domains of any type (C)): Theorem 4.4 and Corollary 4.6.
We do this by first constructing exceptional cones Py of type (Cy) in subgroups
H); of the universal covering group G of SL(2,R), Theorem 3.8, and then apply
Dubrovin’s result in [11], where he constructs an exceptional rank one chain ring
of type (C) associated with a cone P in G.

1., CHAIN DoMAINS AND CONES

1.1. Basic properties. A ring R is a right chain ring, if the set of all right ideals
of R is linearly ordered with respect to inclusion. Left chain rings and chain rings
are defined similarly. A chain domain R has a classical skew field of quotients D
and can therefore be considered as a total subring of D ([7]).

A subsemigroup P of a group G is called a cone of Gif G = PUP™! and P
is a pure cone if in addition PN P~! = {e}. There is a close connection between
cones P In a group G and right or left orders: if P is a cone of G and a,b € G,
then < defined by a <b if and only if a~'b € P defines a left preorder, asid a<b

if and only ifbale P defines a right preorder on G. The relations “<” and “%”

are right orders and left orders on G respectively if and only if the cone P is pure.
Finally, if P is pure, then the right order defined by P agrees with the left order
defined by P if and only if aP = Pq for all a in G, i.e., P is invariant under all
inner automorphisms of G. The group G is then linearly ordered.

Let P be a cone of a group G. A nonempty subset I of G is called a left P-ideal if
PI C I and I C Pa for a suitable element @ in GG. The second condition is satisfied
for any I # G provided I satisfies the first condition. If in addition I C P, we say
I is a left ideal. Right P-ideals, P-ideals and right ideals and ideals are defined
similarly. An ideal B of P is called a prime ideal if B # P and aPb C B implies
a€Borbe Bfora,be P.If abe B implies a € B or b € B for the ideal B # P
of P, then B is called completely prime.

We collect elementary properties of a cone P in G. We can assume that P £ G.
Let U(P) = PN P~1, the subgroup of units of P.
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a): J(P)= P\U(P) is the maximal right and the maximal left ideal of P; it
is the Jacobson radical of P and it is a completely prime ideal of P.
b): The set of right (left) P-ideals in G is linearly ordered with respect to
inclusion. We define I3 < I, if and only if I; D I for right P-ideals I) and
L.
To see this, one considers first principal right P-ideals aP and bP in G. Then
either a b€ Pand bP CaPorb'la € Pand aP CbP. K I, gi I;, then there
exists @ in L,\I1 and I} C aP C I; follows.’

c): There is a one-to-one correspondence between the set of cones P’ # G in
G that contain a cone P and the set of completely prime ideals B of P.

Proof. Let P C P’ C G be conesin G. Then j’ € J(P') and j' ¢ P implies ! € P,
a contradiction. Hence, J(P') C J(P) and P’ = PU (P\J(P"))!. Conversely, if
B C J(P) is a completely prime ideal in P, then P’ = PU (P\B)™! is a cone # G

in G. O

d): Let I be an ideal in P with I # P and @ = (I" # 0. Then Q is a
completely prime ideal.

Proof. If ¢ € P\Q and ca € Q for some a in P, then there exists ng with ¢ ¢
I, However, for any n there exist a;,b; € I with ca = ay...a,,by...b,. Then
@y ...0y, = cd for some d in P and a = dby ... b, € I™ follows. Hence, a € @ and
Q is a completely prime ideal. O

€): A P-ideal I will be right principal and left principal if and only if I =
zP = Pz for some z € G.

Proof. Let I = 3P = Pz with 21,29 € G. Then 20 = 714, z3 = bz for some
a,b € P. Hence, bzya = z;. Since [ is an ideal, there exists b’ in P with bz, = n ¥
and z; = znb’a follows. Therefore, b’'a = 1 and a € U(P), and Pzy = 2P = zjaP =
ZgP. O

f): Let P be a cone in G. The set H(P) of all principal P-ideals of G forms
a group with ideal multiplication as the operation. H(P) is isomorphic to
a subgroup of (R, +, <) if J(P) is the only completely prime ideal of F.

Proof. f I} = 1P = Pz and Iy = zoP = Pz, then I1Is = 2 Pz P = 220 P and
(21P)! = 271 P. It follows that H(P) is a group with P as identity. To prove the
second statement let P D zP = Pz. Then [)(zP)™ = 0 since otherwise [|(2P)" is
a completely prime ideal £ J(P) by d). H(P) is therefore an ordered Archimedean
group and the statement follows from Holder’s Theorem (see [13]). O

g): A right P-ideal I is a principal right P-ideal if and only if IJ(P) # I.

Proof. If I = 2P, then zP D IJ(P) = zJ(P). Conversely, if I is not principal as
a right P-ideal, then for @ € I there exists b € I with aP C bP, a = bj € IJ(P),
je J(P),and IJ(P)=1I. O

We single out cones with the property in f):
Definition 1.1. A cone P of a group G has rank one if J(P) is the only completely

nrime ideal of P



2736 H. H. BRUNGS AND N. I. DUBROVIN

It follows from the definitions that a subring R of a skew field D is total if and
only if the semigroup R* = (R\{0},-) is a cone in the group D*.

This relationship between a cone in a group and a chain domain is generalized
in the next definition.

Definition 1.2. A total subring R in a skew field I is said to be associated with
a cone P in a group G if the following conditions hold:
i): G is a subgroup of D*, the multiplicative group of D.
ii): Every element d in D* can be written as d = g1u, = u2g2 with g1, gz in
G and u1,uz in U(R) so that Pg, P = Pga P.
iii): RNG=FP.

We also say in this case that the cone P is associated with the chain domain R.

Proposition 1.3. Let the total subring R of the skew field D be associated with
the cone P of the group G. Then:
i): In — IR defines an isomorphism from the lattice of right P-ideals to the
lattice of nonzero right R-ideals. The inverse of this mupping assigns ING
to the nonzero right B-ideal I.
ii): The correspondence defined in i) preserves the properties of being an ideal,
a completely prime ideal, a prime ideal, and o principal right ideal.

Proof. i) If Iy is a right P-ideal, then two nonzero elements a,b in IoR have the
form a = gyuy, b = gous for g; € Iy and w; € U(R). We can assume that g1 P C g2 P,
and g1 = gap, p € P follows. Therefore, a + b = ga(puq + uz) € IyR; this shows
that JoR is a right R-ideal, since gl C P C R for some g € G C D. Further, if
g € IuRN G for a right P-ideal Iy, then g = hg'u for h€ Iy, g € Pand u € U(R).
It follows that kg’ € Iy and u € U(R)NG = U(P); hence, g € Iy and [,RNG = I,.
Similarly, one can show that I NG is a right P-ideal if I is a right R-ideal and that
(ING)R=1.

For ii) we only show that the right P-ideal I, is a P-ideal if and only if IoR is
an R-ideal. Let r € R and k € I, & P-ideal. Then r = pyuy for p; € P, u; € U(R)
and rh = pyurh = prkug for ugh = kug with ug € U(R) and h,k € G. By ii) of
Definition 1.2 we have PhP = PEkP; k € I follows and rh € IR, which shows that
IoR is also a left R-module and then an R-ideal. Conversely, if IR is an R-ideal
for a right P-ideal Iy, then Iy = IR N G is a P-ideal. O

Some variations of the results in this section can be found in [12] and [6].

1.2. Divisorial ideals. We consider certain P-ideals for a cone P which will form
a group in case P has rank one.

Definition 1.4. Let P be a cone in a group G. The divisorial closure Tofa right
P-ideal I is the intersection of all principal right P-ideals containing I :
I'= (kP
RPDI
A right P-ideal I is called divisorial if T = I.
If we replace the cone P by a total subring R, we obtain the definition of the
divisorial closure of a right R-ideal and of a divisorial right R-ideal. In addition,

- 5 =
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Let P be a cone in a group G, I a P-right ideal. Then:

a): I 2 I

b): I T

c): gl = gT for any g in G

d): I is non-divisorial if and ounly if J(P) is not a principal right ideal and there
exists an element z in G with T= 2P and I = zJ(P). If, in addition, I is a P-ideal
and rank P =1, then.I = 2P = Pz and I = zJ(P) = J(P)z.

The properties a, b, and ¢ follow directly from the definition. To prove d) we will
write J instead of J(P) and assume that 7 > I and that z € I\]. Then T2 2P > I
and T = zP follows; then I = zJ, since zjP 2 I for some j € J(P) leads to a
contradiction. This also shows that J is not a principal right ideal. If J is not a
principal right ideal, then ¢P D 2.J implies 2 'cP 2 J and 2~ '¢P D P, ¢P D zP
for ¢,z € G. This means that I = zP for ] = 2J and hence I O I. If 2P is a
P-ideal, then certainly z.J is a P-ideal. Conversely, if z.J is an ideal, then zP is an
ideal, since otherwise there is an @ € P and a § € J with azj = 2, a contradiction.
Finally, we assume that IT#£IandIisa P-ideal and that P has rank one. Then
T = zP and the left order Ou(I) = {g € G | gI C T} # G contains the cone P as
well as the cone zPz~! both of which are maximal. It follows that P = zPz"!,
Pz=2P=Tand Jz =2J = L. O

We list a property that was proved in the proof of d):

e): I is a P-ideal if and only if T is a P-ideal.

The next result shows that in the correspondence between right R-ideals and
right P-ideals, divisorial right ideals correspond to each other if the chain domain
R is associated with the cone P.

Proposition 1.5. Let R be a total subring of the skew field D associated with the
cone P in a group G. Then the right P-ideal I is divisorial if and only if the right
R-ideal IR is divisorial.

—~

Proof. Assume I is divisorial, i.e., I =T = (| hP. Then IR C hRfor all h € G
RPDI

with AP D I, and IR C [ hR. To show the reverse inclusion, let d € hR
hP2I

for hP 2 I and d = hry, = gm for g € G, m € U(R). Hence, g = hrym™! €
hRNG =hkPand g € [\hP = I, d € IR follows. Now assume that A is a divisorial
right R-ideal, A = [ dR. Any such d = gm for g € G, m € U(R). Hence,

dRDA
ANG = (NdR)NG = [(gRN G) = NgP, which shows that AN G is divisorial
and AN G is nonempty, since A is nonzero. O

For any subset I of a group G we define the following three subsets of G : the
right order O, (I) {9 € G | Ig C I}, the left order O¢(I) = {g € G | gI C I}, and
the inverse I-' = {g € G | IgI C I}.

It follows that I ™' = {ge€ G | g1 C O(I)} = {g € G | Ig C O(I)}.

‘We have the following two properties where P is a cone in the group G :

f): If I is a right P-ideal, then Oy(I) is a cone of G and O,.(I) is an over cone

of P. Further, I is a right O,(I)-ideal and a left Op(I)-ideal, and I~ is a
richt f(N-ideal and a eft O (N ideal
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For a proof we observe that for any g in G either gI C I and g € Og(I) or I C gI

and g~ € Og(I). The rest of the statements follow immediately.
g): O.(J(P)) = Ox(J(P)) = P, and J(P)* # J(P) implies that J(P) =
zP = Pz for some z € P.

The first statement follows from Property c) in Section 1.1 since O..(J(P)) D
P implies that ;7 'J(P) C J(P) for some j € J(P). Hence, J(P) C jJ(P), a
contradiction that shows O, (J(P)) = P and similarly O;(J(P)) =

The second statement follows from Property g) in Section 1.1, its left symmetric
version, and Property e) in Section 1.1. O

Even though one can consider the groupoid of all divisorial P-ideals for a cone
P of arbitrary rank (see also [2]), we restrict ourselves to the rank one case:

Definition 1.6. Let P be a cone of rank one. Then M(P) is the set of all divisorial
P-ideals together with the operation “*” defined by:

hslh=ILI for P-ideals I, .
‘We have the following result:

Theorem 1.7. Let P be a cone of rank one in a group G. Then:
a) M(P) is a linearly ordered group;
B) The inverse of an element I in M(P) is IY;
v) H(P) is a subgroup of M(P).

Proof. We show first that the operation defined in Definition 1.6 is associative.
On the set of all P-ideals we define a relation I; ~ I if and only if I; = Iy; this
is an equivalence relation.
We are going to show next that for P-ideals I3, I, the following equivalence holds:

(+) ko R,

If [, = I) and I = I, then (+) is trivially true. If Iy # Iy, then I, = zP D
zJ(P) = Iy and J = J(P) is not right principal. Also I, = zP = Pz is a P-ideal
by Property d).

The equivalence (+) holds therefore if and only if the following equivalence holds:

(++) JL ~ PL = L.
Hence, if JI; = I, we are done. Otherwise, JI; C I3 and Iy = Pd follows for some
d in G by the left symmetric version of Property g) in Section 1.1. Since I3 is an
ideal, we have dP C Pd, P C d~!Pd and the equality d~' Pd = P since P has rank
one. Then dP = Pd = I3, dJ = Jd and JI; = Jd = dJ ~ dP = I; which proves
the equivalence (++) and hence also (+) in this case.

Finally, we must prove (+) if ; = fl and fg D Iy. Then, as above, fg =aP =
Pa D aJ = Ja = I for some a in G. The equivalence (+) then holds if and only
if the equivalence IyJ ~ [P = I, holds. Using the right symmetric version of
arguments used in the proof of (++), one shows that Iy J ~ I;. This proves (+).

If Iy ~ I and Iy ~ I} for P-ideals Iy, I}, I, I}, then I I ~ L= I I ~ NI
Hence M(P) is a factor monoid of the monoid of all P-ideals, and the opemtlon *
given in the definition for M(P) is associative.

Next we show that II—1 = P for I a P-ideal, and I~ = P follows from similar

ardraente. Qinee T fas Poades] T—1 sa & Puadeal.



CLASSIFICATION OF RANK ONE CHAIN DOMAINS 2739

If II"1 = P, we are done; otherwise I1-! C J(P) = J I II"' C Pz C J for
some z € J, then IT7'z ! C P and I='27! € I™! which implies 2! € O (I ') =
P, since P has rank one. This is a contradiction since z € J, and IT 1 = J, J # Pz
for all z € P remains as the only possibility to be considered. It then follows from
Property g) that J2 = J, J is not a principal right ideal, and hence IT-1 = J = P.

In order to complete the proof of o) and ) we show that I™! is a divisorial
P-ideal for I a P-ideal. If on the contrary, ™! = 2J C 2P = T-1 and J is not a
pnnmpal rlght ideal, then 1 zJI C P by the definition of / —1, and by (+) it follows
that 2zJI C P = P. Since 2.J = zP, we obtain 2I C 2I C P, andhencezGI L=3¥
a contradiction.

This shows that M(P) is a group and that ) holds. For I; D I3 in M(P)
we define I; < Iy and M(P) then is a linearly ordered group with P as identity.
Elements in H(P) have the form I = zP = Pz for some z in G with zP = 2P
and (zP)™! = 271P = Pz~1; see f) in Section 1.1 and 7) follows. This proves the
theorem. O

Corollary 1.8. Let P be a cone of rank one in a group G. Then M(P) and H(P)
are Archimedean groups.

Proof. Let B C P be a divisorial ideal. If B ¢ J(P) = J or B = J # J?, then
(B™ = 0 by Property d) in Section 1.1. If J = J?, we have J = P and hence
N B™ = 0 in all cases, and B™*1 ¢ B". Then B"*+! C B, since there are no further
right ideals between B™+! and B™+!. This implies (}B™ = @, and it follows that
M(P) and H(P) are Archimedean; see also Property f) in Section 1.1. O

Related results can be found in [12] and [2].

1.3. The classification of rank one cones. The groups M(P) and H(P) will be
used to classify rank one cones P in groups GG based on the lattice of their ideals.
In the following theorem and proof we will write .J instead of J(P).

Theorem 1.9. Let P be a cone of rank one in a group G. Then exactly one of the
following possibilities occurs:
A) : The cone P is Archimedean, i.e., aP = Pa for all a in P. We distinguish
two possibilities in this case:
A,): M(P)=H(P) = (Z,+, <), which is ezactly the case when J? # J. Then
every P-ideal is o power of J and the cone is called discrete.
Az): M(P) = (R,+,<) and H(P) is a dense subgroup of M(P).
B): The cone P is nearly simple; i.e., J is the only proper ideal in P. In this
case M(P)=H(P) = {P}.
C): The cone P is exceptional; i.e., there exists a prime ideal Q in P that is not
completely prime. Then:
i): There are no further ideals between J and Q.
ii): The ideal Q is divisorial and M(P) = gr{Q} is an infinite cyclic group.
iii): Q" =10 .
iv): There ezists an integer k > 0 such that H(P) = gr{Q*}. The cone P is
said to be of type (Cy) in this case.

If P is of type (Cy), then
(@) I 0Q 1 oPOIOQROQHQED
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is the chain of P-ideals.
If P is of type (C1), then

D E?2 =2 P02 2o Q 1=2'PD>z Y JDPDOJIDzP
=032 522P=0Q% D22 -+
is the chain of P-ideals.
If P is of type (Ci), k > 2, then
o) (Qk+l.)—‘l = z—-lp ) P | > EQk_l)—l 3.
2Q 'oPOI2Q0@Q*D---DQF 1 a2P o]
=Q* > ... 0™ D 2P D AT
— sz ») Q2k+1 >
is the chain of all P-ideals.

Proof. If J is the only proper ideal of P, then P is of type B.

Otherwise, let @ = |JI be the union of ideals of P properly contained in J. If
J? = J and J D Q, then P is exceptional: for ideals I; D Q and I D Q in P we
have I - I 2 J? = J O Q and Q is a prime ideal of P, not completely prime and
no further ideal exists between J and Q. The divisorial closure é of () is an ideal
that cannot be equal to J, since J would then be right principal. Hence, Q=Q
is the smallest positive element in the linearly ordered Archimedean group M(P),
and M(P) = gr{Q} is an infinite cyclic group. The subgroup H(P) has therefore
the form #(P) = gr{Q*} for some k > 0; we say that P is of type (Ck).

We can now describe the P-ideals in each case (Cy) if we recall (see Property
d) in Section 1.2) that an ideal I is either divisorial or of the form ¢J = Jc with
I = c¢P = Pe, some ¢ € G and J = J2. It will also follow from the rest of the proof
that if P is exceptional, then J = J? and J > @ = |JI, where the ideals I are
properly contained in J, the prime ideal that is not completely prime.

In the case (Cp) there are no principal ideals # P and the group M(P) = gr{@}
contains all P-ideals # J. In the case (C) the ideal Q: zP = Pz is principal
and M(P) = H(P). In the case (Ci), k > 2, the ideal Q* is principal. However,
QF itself cannot be principal, since otherwise Q* = 2P implies Q*J # QF; hence,
QJ # @ and Q is principal (see Property g) in Section 1.1). Hence Q% = zP =
Pz > Q¥ = 2J = Jz for an element z in P,

It remains to consider the case where either J # J%, or J = J2and J=Q = |JTI
for ideals I properly contained in J. In this case we will prove that aP = Pa for all
a in P. If for some a in P the right ideal oP is not a left ideal, then an element ¢
exists in P with caP D aP and caj = a follows for an element j in J. By assumption
there exists an ideal I C J with j € I and [|I"™ = 0; we obtain the contradiction
a = caj = ¢™aj™ € I". We have Pao C aP, P C aPa™! and P = aPa! since P
is of rank one. Therefore, Pa = ¢P for all ¢ in P and P is invariant.

If J £ J?, then J = aP = Pa, for some a in P, is the smallest positive element
in the Archimedean group M(P). Hence, M(P) = H(P) = gr{J} is the group of
all P-ideals.

If J = J? and J = Q, then H(P) is isomorphic to a dense subgroup of (R, +, <)
and M(P) is isomorphic to (R, + <). O

If R is a chain order of rank one in a skew field D, then R* = R\{0} is a cone
1 the oronn 7 We eav that B has +vne (AY (AN (ASY BY (€)Y or (LY Jd
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The next result follows from Propositions 1.3 and 1.5 and Theorem 1.9.

Corollary 1.10. Let P be a cone associated with the rank one chain domain R.
Then P and R have the same type.

2. THE UNIVERSAL COVERING Groupr G OF SL(2,R)

2.1. The group SL(2,R). By SL(2,R) we denote, as usual, the group of 2 x 2
matrices with real entries and determinant equal to 1. Then

U={u=(g aEl )‘a,be]ﬁ,a>0}

and

cost —sint
= {r(t) - ( sint cost )|t ER}
are two particular subgroups of G. Every element s € SL(2,R) can be written in a
unique way as

s=r{lu for r(t)eS with 0<t<2r and uel.

To prove this claim, let {e;, ez} be the standard basis of R?, the Euclidean plane,
and let the elements of SL(2,R) be the representations of linear transformations of
R? with respect to the basis {e;,e2}. For every nonzero vector a € R? there exists
a unique element ¢ € [0, 27) with a/||al| = e, cost + ez sint; we write arg a = ¢ in
this case.

Let t = arg s(ey) for the given element s € SL(2,R) and r(—t)s = u € U for
some element u, since r(—t)s(e1) = ae; for a > 0. Hence, s = r{fju and this
representation is unique, since UNS = {I}, I = (} {), the identity of SL(2, R).

2.2. The group G. We are going to construct the universal covering group G
of the group SL(2,R) in this section. We do this first for the subgroup § by
fixing a symbol, say z, and by rewriting the additive group of the real numbers
in multiplicative form:

R={2*|teR}; aft-af2=zhtz;, zh <g% ot <t

Then R is a linearly ordered group isomorphic to (I8, +, <). The mapping 7 from
R to S with 7(z") = r(t) is a group epimorphism with the cyclic subgroup gr{z?"}
as its kernel; 7 is a cover of the Lie group S. Next we define the covering group G
of SL(2,R) as the set G = {a'u | ' € R, u € U}, the Cartesian product R x U,
together with the following operation: If z*'u,, z%%us are two elements in G and
ty = 2k + @ for k € Z and ¢ € [0,2n), then uir(p)us = r(¢)u in SL(2,R) for
u € U, 4 € [0,27), and the product in G is defined as zftu; - xf2uy = g H27k+tiy,

The mapping 7 from above can be extended to a mapping from G to SL(2,R)
by defining

7(z'u) = r(t)u.

We want to prove that G is a group and that 7 is an epimorphism from G onto
SL(2,R).

Lemma 2.1. The mapping 7 is onto SL(2,R), and if a - b= ¢ for elements a,b,c
im (2 thern () — (0 (H
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Proof. The element ' in G satisfies 7(x*u) = r(t)u for the arbitrary element r(t)u
in SL(2,R); 7 is onto. If @ = a®tuy, b= 22us n G, ts = 2rk+ ¢, k € Z, ¢ € [0,27)
and if uyr(p)ug = r(¥)u, ¥ € [0,27), u;, u € U, then ¢ = ghr+27%+¥y and
7(¢) = r(t1 + 2wk + Y)u = r(t)r(¥)u = r(t1 )urr (@)us
= 7(a)r(2mk + @)us = 7(a)7(b)
which proves the lemma. O

Several special cases of the associative law for the operation defined for G are
proved in the next few steps. We can consider R as well as U as subgroups of &
and the equations

(+) ou=zu, zP.zlu=o"y, and zfu-v =tud
follow. We conclude also that z! - a = z* - b implies @ = b for elements a,b € G.

Lemma 2.2. For any element ¢ = 2'u € G and any m € 7. the product g - ™ is
equal to ™™y,

Proof. We have mm = 2wk + ¢ with k € Z, and ¢ = 0 if n is even, and ¢ = « if
m is odd. In both cases ur(yp) = r(y)u follows, which proves the statement of the
lemma. O

Lemma 2.3. For any a,b € G and any integer m € Z the following equalities hold:
. (a-b)=(z™ -a)-b=a- (2™ -b).

Proof. Because of (+) the first equation follows, and we can assume thata =z € U
and b= z! € R in the second equation.
It remains to prove the following equality:

(@™ - u)-at =u- (@™ -a")
where t = 2wk 4 @, k € Z, ¢ € [0,27) and ur(p) = r(¢) for ¢ € [0,27), v' € U.
Then (2™™-u)-xt = x™™+2mk+iy/ We distinguish three cases in order to compute
the right-hand side of the above equation.

In the first case, m = 2k’ is even and the equality follows immediately.
In the second case, win = 2nk’ + 7 for some k' € Z and ¢ < 7. Then

2n (k+E)+p+n 27:(k+k'),” . mTH»up — x??r(k+lc')+'rr+qbu! - m?rm+21rk+a|bu!

w-x =
since ur(m + @) = ur(m)r(y) = r(v)r(¥)u’ = r(r + ¢)u’ in SL(2,R); the equation
is proved in this case.

In the final case, 7m = 27k’ + « for ¥’ € Z and ¢ > 7. The right-hand side of

the above equation is then equal to
- m?ﬂr(k+k’+1)+¢p—w - x21’r(k+k‘+1)—7r+ljlul - x?rm+21rk+¢ﬂr’

which proves the lemma. O
Lemma 2.4. Letu € U andt € (mm, w(m+1)) for some m € Z. Then u-a* = xt'u’
foru' €U and ' € (wm,n(m +1)).

Proof. Let t = 2nk + ¢ for k € Z, ¢ € (0,27). f . = 2k is even, then ¢ €
(0,7); hence sing > 0. Tt follows that for any u = (2 %) € U the argument
¥ of ur(p)(er) = r(¢)(ey) is also in (0,w) since ¢ = arg [(0 ot (sm:‘:)] and
a"lsing > 0. Hence ¢ = 27k + ¢ € (mm, m(m + 1)) as stated in the lemma.
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If m = 1+2k is odd, then ¢ = 2wk + ¢ and ¢ € (w,27). Then gin ¢ < 0 and siny
with ur(y) = r(¥)v’ is also negative with the above argument; hence, ¢ € (m,27)
and t' = 2nk + 7 € (mm, n(m+ 1)). O

Theorem 2.5. a): G is a group;

b): The mapping T is a homomorphism from G onto SL(2,1R');
c): The center of G is the infinite cyclic group generated by x™.

Proof. To show that the operation defined for G is associative we consider three

elements *u; € G, i =1,2,3 with ¢; € R and »; € U and the equation

() g1 = (@) - 2%ug) - ¥ uz = 2y - (2Pug - TPuz) = ¢a.

By Lemmas 2.2 and 2.3 this equation holds if and only if the following equation is
true:

uy * wtg+1rm tz+nn i34

Uz =2

(gfr¥mE Uug - T

‘1&2) . t1+1rku1 N (xt2+ﬂ'm Uﬂ)
for integers k,m and n.
It follows that it is sufﬁcxent to prove (x) only in the case where t1,t2,%3 € [0, 7).

For g, = ztu’ and g = z*' o with t,#' € R, «/,»” € U we apply Lemma 2.1 and
obtain

r(t)u’ = (r(t)u - r(t2)ug) - r(ts)us

and

r(t)u” = r(tr)us - (r(tz)us - r(t3)us)

in SL(2, R) where the operation is associative, and therefore r(t)u’ = r(t')u" follows.
This implies v’ = v” and ¢ — t' = 27k for some k € Z. It remains to show that
k=0

We apply Lemma 2.4 and obtain uur" = gt2u) for uj € U, t) € [0,7); wjug -

at* = 2B for @ € U, ta € [0,7); ugzt* = zteul for uh € U, t§ € [0,7); and
uyztrts = gt2s3yf for uf € U and to3 € [0, 7).
Therefore:

= (auy - 2%ug) - 2Bug = (2 20 ug) - T ug

— ghttitlag
and

g2 = 2y - (22ug - TBug) = Vg - 7 t2 s g
— ptitizs u;ruéﬂ:i
Hence, t =t + 5 + tand ¢’ =t + t2,3 and therefore
t—t =th+ia—ta3 =27k,

However, t} + t3 and #; 3 both belong to [0,27) and k = 0 and the associative law
follows for the operation defined for G.

Since G has e = z°E, for E = (}9), as the identity and z*u has v~z as its
inverse, G is indeed a group; this proves a).

The statement b) was proved in Lemma 2.1. It follows from Lemma 2.3 that
gr{z"} is contained in the center Z(G) of G. Conversely, if ztu € Z(G) for t € R
and u € U, then an application of Lemma 2.1 shows that r(f)u is in Z(SL(2,R)).



2744 H. H. BRUNGS AND N. 1. DUBROVIN

Hence r(t)u = 2r(0), w = (}9), and t = 7k for some k € Z follows. Therefore
ztu € gr{z™}, which proves ¢) and the theorem. O

See also [1] for the fact that G is right orderable, but not locally indicable.

2.3. The representation of the group G. To each element g = z'u € G we can
assign the projection v(g) = v(z'u) = z* € R. The mapping V : G — Aut (R, <) is
defined as Vg(z*) = v(ga?) for g € G, z* € R. That V is indeed an automorphism
of (R, <) follows from the next result.

Lemma 2.6. For g € G let V,, be defined as above. Then:
a): Vorga = Vg 0 Vg, Jor 1,92 € G.
b): V, is the identity mapping if and only if g is the identity element in G.
c): The stabilizer st(a*) = {g € G | Vy(z*) = z*} is equal to 2*Uz* = U,
which is an Ore group.
d): Vg is an automorphism of (R, <) for every g € G.

P'raof. To prove a) we compute v(g;go2t) and U(g;‘v(gz:ct)) Let gy = a1y, go =
*2g for u; € U. Then gigoat = zhuztuga! = 2* 1y zt2at o’ for some u' €
U t' € R with upzt = o' o', Further, gty ztatt o = ztrH 3o for wate™ = 2'@
for a € U, ¥ € R. It follows that v(g1gezt) = =¥t and that v(gv(geat)) =
vz uyzt2H') = a8 H; this proves a).
To prove b), assume g = :I:‘lu and Vy(zt) = «* for all ¢ E R. For t = 0 it follows
that #; = 0. We consider ¢ = § and assume that u — (% ,21). Then V,(z%) = 2%

Tl )6 DO m()-

Hence, b= 0 and u = (§ _%:). Finally, for £ = § we must have

62 @]

and a = a~! = 1 follows; hence, g = e, the identity in G, and b) follows.

To prove c) we observe that st(z®) = {z¥uy € G | V,(2°) = =** = 2%} equals
U. Hence, Vg(zt) = Uzt =2 U. These stabilizers are Ore groups in the sense that
the group ring TU over a skew field T is an Ore domain. This is true since U is the
semidirect product of the following two torsion free abelian groups:

A= {(0 -1)|0<a€R} and B = {( )|beIR}.

This proves c).

Finally, we want to prove d). Since V;+ is an automorphism of (R, <), it follows
from a) that it is enough to show that V,, is an automorphism of (R, <) for any
u € U. We show first that z*2 > g% implies V;,(z*?) > V,,(«%) which then implies
that V,, is one-to-one and order-preserving. By Lemma 2.4 and Theorem 2.5(c) we
can assume t1,to € [0,7). It then follows that ¢ —t; € (—m,7), and in addition
tg — #; > 0 if and only if

sin(t; — ;) = Det (20 1) > 0.

sin £; 8in fg

LRI

TSR g Py - T Py ~ - f s T v\ Fes R
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dy > dy follows. This shows that z% = V,(z*) > 2% = V,(z!) for #3 > #; and
that V,, is order-preserving and one-to-one.

It remains to show that V,, is onto, and by Lemma 2.4 and Theorem 2.5(c)
it is enough to show that V,, maps the interval [z9,2™] onto the interval [z?,z™].
This, however, follows from the fact that V,,(z%) = 2%, V, (2™) = 2™ and that V,, is
continuous. a

We will prove next a technical result which will be used several times.

Lemma 2.7. Let g = a'u € G with t = 7k + to and z* € R with t; = mm + t10
for kym € Z and ty, 1 € [0, 7). Assume that (§) € R? with arg (§) = t10.
Then Vy(a') = ™ E+mH for ¢ = arg (r(to)u(§)).

Proof. By definition we have that Vy(z*') = v(gz?'). Further, gz!* = rlurfr =
zm(k+m)gtoyatio since 2™ is in the center of G by Theorem 2.5(c).

By Lemma 2.4 we have uzt = 7t % with @ € Uand % = arg (ur(t10)(§)) € [0,7).
Hence, @'ouz®® = g%+ On the other hand, ¢ = arg (r(to)u(§)) = to+ ¢,

since both fo, t € [0,7). It follows that gzt = gm(k+m)+tetiy and V, H(ah) =
gr(ktm)+t’ O

3. EXCEPTIONAL CONES IN THE UNIVERSAL COVERING Grour G

In this section we construct exceptional cones of type (Cy) for every k in the
universal covering group G of SL(2, R).

We define first two particular elements w,,ws in G which will play an important
role in this construction. The element wy = (%) € U C G and 'r(wl) = w; follows.
Next we consider the element (1 9) € SL(2,R) and o = arg [(19)(})] = arctan2 €
(0,7) and define wo as z%u Where u=r(—a)(39) € U; hence, 7(ws) = (39

Lemma 8.1. Let b be an element in [0, 7). Then lim Vyn(2?) = 2°.

Proof. We consider the real number b, with z% = V,,»(2?). Since w} = (§ %) and
7(wf) = wl, we can apply Lemma 2.7 and obtain

b =arg [(§ 1) (520)] = arg(*°PEx, " b).
If b = 0, then b,, = 0 for all n > 0 and the result follows. If b € (0, ), then sinb > 0
and lim (cosb+ 2n sinb) = co; the statement of the lemma follows. O

n—o0
We are now ready to define one of the main objects of this paper:
P={g€G | V(=) >}
The next result shows that this is an exceptional cone of type (C,) in G.
Theorem 3.2. a): The setP = {g € G | Vy(a®) > 2°}is a cone in G with U(P) =
U.
b): Any right P-ideal is either a principal right ideal z'P or of the form
2t J(P) for some t € R.
c): Any P-ideal has the form ™™ P or ™™ J(P) for some m in Z.

d): The cone IP is exceptional of rank one with Q = z"IP the prime ideal that
s motco meen nrames P oie errentionnl of fane (CL Y
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Proof. a) If g and h are elements in P, then Vgi(z%) = Vg (Vi (a?)) > Vy(z®) > a°
by Lemma 2.6, a) and d), and gh € PP follows.

If g is not in PP, then Vy(z°) < x°; hence, 2° < V,-1(z") again by Lemma 2.6,
and g1 € P follows and IP is a cone of G. It also follows from the above arguments
that g,¢~" € PP implies V,(z°) = z° and g € U. Conversely, UC Pand U(P) =U
follows. Hence, J(P) = {g € G | V(z°) > z°}.

b) Let I be any right P-ideal in G. Then it follows that z* = inf{V,(z°) | g € T}
exists since I C cP for some ¢ € G. We will show that T = z°P for the divisorial
closure I of I, see Definition 1.4. By definition we have 2®P 2 glP = z°P for all
g € I since o € 3; hence z®IP D I. Conversely, if hg G with AP = 2P D I, then
¥ < Vy(2P) for all g in I and v < a follows; hence I = z®P. It follows that either
I=2P=1or that I = z°P and I = z°J (P); see Property d) in Section 1.2.

c) Assume that z'PP is a P-ideal. For t = mm + tp, m € Z and &y € [0,7) it
follows that %P is also a P-ideal since z™ is central in G. If #, > 0, it follows
from Lemma 3.1 that there exists a power w] of wy in U with w}z'oP D 2%P, a
contradiction that shows that z'P = z™"P. If I = 2! J(P) is a P-ideal, then T = z'P
is a P-ideal by Property d) in Section 1.2, and t = mm by the above argument.

d) We have P D J(IP) D z"P = @ and @ is not a completely prime ideal of P,
since z™/2-2™/2 € @, but ™2 ¢ Q. However, @ is a prime ideal, since any ideals A
and B of IP that contain @ properly, also contain J(P); hence, AB 2 J(P)J(P) =
J(P) D @, and it follows that ) is a prime ideal that is not completely prime.
There are no further ideals between J(P) and @, and Q" = 0. It follows that P
is an exceptional cone of type (C,); see Theorem 1.9. O

We denote by F' the subgroup gr {wn,wz} of G generated by wy and wp. This
subgroup is mapped by 7 onto the subgroup gr {(3%), (19)} of SL(2,R) generated
by (32) and (19). Since this subgroup of SL(2,R) is free (see [15], 14.2.1), the
group F is free of rank 2.

Lemma 3.2. Let hy be the element wowy ‘wsy in F. Then Vj,, (z0) = «*® (= ¢
(2", 2"t 3).

Proof. We have woz® = a%u for a = arg(}) € (0,n) with
u=r(-a)(39) €U.
1t follows from Lemma 2.7 that
’ -3

V1 (@%) = at =z*%02) since wil=(} ) eU

and
t' = arg [ 6‘12)(5)] = arg (7).
By a further application of Lemma 2.7 we obtain
—3 "
Vhl(-’ﬂo) — sz (marg( 2 )) =gt

with

t = arg [r(w2)(3*)] = arg [(39) (3°)] = are(Z3)-

Hence, Vi, (z°) = 2% (~4) = z7+*&(2) which proves the lemma. a
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In order to construct further cones we consider a subgroup H of G that contains
F and define
Pg=HnNP
It follows immediately that Py is closed under multiplication. If g € H\ Py, then
g¢Pand g~! € HNP = Py follows; Py is a cone of H.
Lemma 3.3. Let t € R. Then Pyz'P = Pr'P.

Proof. 1t is enough to prove this for t € [0,), since t = k7 + 1, to € [0,7) in the
general case with ™ in the center of G.

Ift = 0, then PyatP =P = Pz'P. If t € (0, 7), then for any 7 € J(I) there exists
an n with w72!P D jIP by Lemma 3.1. Hence, Pz*P = J(P) = | Juiz'P C Pya'P,
and the statement in the lemma follows. O

The next result shows that F contains elements of a certain type.

Lemma 3.4. For any integer m and any £ > 0 there ezists an element z*u in F
with u € U and t € (mm, ™m + €).

Proof. Let hy be the element wpwi ws in F. Then, by Lemma 3.3, we have
Vo1 (@) = 2° where § = arg(§). It follows that V; (2%) < Vpoa(af) =2~
and that Vhl-n(mo) <z~ "V for any natural number N.

We conclude that for the given integer m there exists a natural number N and
an integer M < m with

Vh;N(ﬂ.‘U) € [ M T,
For € the given real number, there exists by Lemma 3.3 and the continuity of V; a
é with 0 < § < £ and
Vi ([‘TO&l 'Ts)) C (337?, '-L"TH-%)
and hence
(*) Vi, ([mrk, $Tk+&)) C (m‘ir(k+1)’m1r(k+l)+%)

follows for all k € Z.
By Lemma 3.1 there exists a natural number n; with

Vumip(a®) € [«™™,a™™*+%) and h= Y eF
Hence, by (¥) we obtain
Vi w"lh(:‘cu) e (w'xr(M+1),w1r(M+l)+%)_
1%
By another application of Lemma 3.1, there exists a natural number ng with

Vw;‘zmw;‘lh(fco) e (mﬂMu), x-n[M+1)+5) C (x”(mn),xwwﬂ)ﬂ)_

By repeating the last two steps m — (M + 1) times, the statement of the lemma
follows. O

The next result shows that the cones Py are indeed exceptional.

Proposition 3.5. Let H D F be o subgroup of G and Py =N H. Then:
a): Py is an exceptional rank one cone in H.
b): The mapping ¢ : M(F) — M(Py) with p(z™™F) = ™" PN H, m € Z,
defines an isomorphism between M(IP) and M(Py). The inverse of ¢ is
given by o~1(C) = CP for C a divisorial Py -ideal.
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Proof. We recall that M(IP) is the group of divisorial P-ideals in G (Definition 1.6)
and that M(P) = gr {Q} = gr (z™P) by Theorems 1.9 and 3.2.

IfCisa divisorial Py-ideal in H, then CP is a P-ideal in G by Lemma 3.4. The
divisorial closure CP of CP is therefore equal to some power of z"IP and CP = g™ P
follows for some m in Z. We want to prove that CPNH = C and assume that
hPyg 2 C for some h € H. Then hPyP = hP 2 CP; hence kP 2 CP. Therefore,
hPy = hPOH D CPN H. It follows that C = & D CPNH 2 C and C = CPN H.
This shows that C being a divisorial Py-ideal implies C = &™ PN H for some m.
We want to show next that (z:’fﬁl;-ﬁH ) = a™PN H for any n. Since (m’gﬁﬁ H)
is divisorial, we know that (:r:"—"ﬁ_H ) = @™P N H for some m by the above
argument.

By Lemma 3.5 there exist elements zf1u), f2u; € F C H with t; < 5 €
R, ui,uz € Uand t),t; € (x(n—1),7(n—1) + F).

It follows that

ﬁtlulPH = :rt‘uﬂPﬂH > :ctﬂuzll"ﬂ H= ItzﬂEPH 2 a™PFNH.

Hence, """ DPNH D (:EW%-H) 2 z™PnNH.

If ("~ VPNH = (2™ P N H), then this ideal would also be equal to z*u, Py and
z*2ug Py This would imply zf1u) PylP = o8P = zt2uy PylP = 2P, a contradiction
that shows that (z™P N H) = (z""PN H) for all n. This set of divisorial Py-ideals
does not contain J(Py), does not contain a completely prime ideal (Lemmas 3.3
and 3.5) and no ideal of the form aJ(Py) # J(Py), o € Py, i8 completely prime
in Py. This shows that Py has rank one and that M(Py) is infinite cyclic with
Qu = z™PN H as the positive generator of M(Pp). Since J(Px) D Q, it follows
from Theorem 1.9 that Py is an exceptional rank one cone in H. This proves all
statements in the lemma. O

We consider now a condition that will guarantee that Py is exceptional of type
(Ck)-

Proposition 3.6. Let H be a subgroup of G containing F with HN (gr {z™} xU) =
gr{z™} x U(Py) for some integer k > 0. Then the exceptional cone Py has type
(Cr).

Proof. It was shown in the previous proposition that Pp is an exceptional cone
with M(Py) = gr{(z"P N H)}. To prove the statement in this proposition it must
be shown that H(Py) = gr{z™ Py}, see Theorem 1.9. Hence, let gPy = Pyg be
a principal ideal in H (see property €) in Section 1.1).

Then glP = PyglP = PgI® by Lemma 3.4 and ¢gIP = Pg since IP has rank one.
By Theorem 3.2, c) it follows that ¢ = @™"u € H for some integer m and u € U
and g = ™"y for u € U(Py) and some integer n by assumption. Therefore,
9Py = ™" Py and H(Py) = gr{z™ Py} = gr{Q"‘} follows for Q@ = «™PN H; Py
is exceptional of type (Ck)- O

Theorem 3.7. Let Hy = gr {wy,ws, ™"} be the subgroup of G generated by F and
the central element o™ for an integer k > 0. Then P, = PN Hy, is an exceptional
rank one cone in Hy, of type (Ck).

Proof. It is sufficient to verify the conditions in Proposition 3.7 for Hy.
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Assume that
(*) T P Rl ekt = 2 € H, N (gr{z"} x U)

for some integers p, 24, u; for i = 1,...,n, and u € U. We apply the mapping
(Theorem 2.5b)) to both sides of the above equation and obtain

() CORPEE ) (5, ) (3H) (2 9) = (1) (5 ,20)

where u = (& ?,) with b, 0 <a €R.

Since the entries of the matrices at the left side are all integers, it follows that a
and a~! are integers greater than zero; hence a = ¢! = 1. By a similar argument
it follows that b is an even integer, b = 2s forsome sin Zand u = ({ %) = (1 2)* =
wi € 7(F) follows.

If (—1)*?(—1)™ = —1, then it follows from (#*) that

=(69) = (0% ) (2 D) - (6 %) (2, DG ) € 7(F),

which is a contradiction, since the group 7(F') freely generated by 7(wy) and 7(ws3)
(see the remarks before Lemma 3.3) does not contain a nontrivial central element.

Therefore, (—1)? = (—1)"‘ can be cancelled in (+*) and, using again the fact that
T(w1) = (§$) and 7(w2) = (1) are free generators of 7(F), it follows that n = 1,
b = 21, if we ignore exponents that could be zero. With u = w!* we can rewrite
(*) ast 2™ Puit = g™ w} It follows that v; = s, m = kp and w = w§ € U(P);
the condition in Proposition 3.7 is satisfied and Theorem 3.8 follows. O

4. EXAMPLES OF EXCEPTIONAL RANK ONE CHAIN DOMAINS

In this section we construct domains S; associated with the exceptional cones
Py of type (C}) as described in Theorem 3.8.

In Lemma 2.6(c) it was proved that 7U is an Ore domain for any skew field T
and the subgroup U of G. We denote by K the skew field of quotients of TU for
a given skew field T for example, T' = Q, the rationals. Let K{G} be the right
K-vector space and left T-vector space consisting of all series

y=z"k + kg +---

with &) <ty <..., k; € K, and supp (7) = {z!* | k; # 0} well ordered.

We call supp () the support of the series . If k; # 0, then v(7) = 2% € R is
the norm of y and v(0) = oo for v = 0.

Let @ = End K{G}x be the endomorphism ring of the K-vector space K{G} k.
For ¢ € @ and y € K{G} we write g[y] for the image of 4 under q. The representa-
tion V : G — Aut (R, >) considered in Section 2.3 can be extended to a mapping
V defined on Q with

V(a) = v(gla®]),  Vy(oo) =
for g € Q, 2* € R, and V, : (R, ) — (R, 00). It follows that
Vays(2f) 2 min {Va(z), Ve(z")}

for any a,b € Q and #* € R. However, V; is not equal to V, o V}, in general.
We recall a definition and a result given by Mathiak in [17].

Definition 4.1. Let D be a skew field and (T, <) a linearly ordered set. Then a
mapping V : D* — Aut (T, <) is called an M-valuation if the following conditions
hold:

MVL1. Vy, = VoV for any a,b € D*;
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MV2. Vayu(h) > min{V,(h), Vi(h)} for any a,b € D* witha+b#0and heT.

If we add the symbol co for infinity to " and define Vp(h) = co and V;(c0) = co
for all h €T, 0,a € D, then MV1 and MV2 will be valid for all elements a,b € D
and all h € TU {oc}.

The next result follows almost directly from the previous definition; see also [16]
and [17].

Proposition 4.2. Let V : D* — Aut(T, <) be an M -valuation for a skew field D
and a linearly ordered set (I', <) and let h be an element in I.

Then the set Sy, = {d € D | Vg(h) > h} is a total subring of D. Conversely, any
total subring S in a skew field D can be obtained in this way forT = {aS | a € D*},
aS > bS if and only if aS C bS and Vy(aS) = daS. The ring S coincides with Sy,
forh=8¢€l. O

The space K{G} introduced above is also a left G-module if we define for g € G

and v =Y z'k; € K{G} that
g7 = 2% (u1ky) + 22 (ugks) + ' (usks) + . ..

where g - ztt = art‘*u,- for w; € U C K, t; € R. It follows from Lemma 2.6(d) that
] <ty <ty < ... is also well ordered and hence gy € K{G}. The group ring TG
can therefore be considered as a subring of Q.

If A is any subring of @, then we define D[0, A] = A and D[n + 1, 4] as the
subring of () generated by D[n, A] and all inverses of elements of D[n, A] in Q. The

union

oo
|JDIn, 4] = D|4]
n=0
is called the rational closure of A in Q. Let D = D[TG] be the rational closure of
the group ring TG in Q.
The following result can be found in [11] (see [10] also):

Theorem 4.3. a) The rational closure D of TG in Q is a skew field.

b) The mapping V restricted to D* is an M -valuation of D* to Aut (R, <).

c) The ring S = {d € D | Vg(z®) > 29} is an exceptional rank one chain order
in D of type (C1) associated with the exceptional cone IP in the group G. a

In order to construct skew fields that contain rank one exceptional chain orders
of type (Cy) we consider the rational closure Dy = D[THy] of the group ring THy
for the group Hy = gr {w:,w2,x™} (see Theorem 3.8) in Q = End K{G}x.

Since Dy C D = D[TG] € Q and D is a skew field by the above theorem, it
follows that Dy is also a skew field and Sy = SN Dy, is a total subring of Dy.

It follows from Corollary 1.10 and Theorem 3.8 that Sy is an exceptional rank
one chain domain of type (Cy) if the following theoremn is proved:

Theorem 4.4. The totel subring Sy = S N Dy, is associated with the cone P, =
P N Hy.

Before this theorem can be proved, we need the result in the following lemma.
Lemma 4.5. Let v € K{G}. Then

(*) |J suwppdh] € | Vi(suppa).
d€ Dy gEH
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Proof. Let Y, be the right side in (). Then in order to prove (%) it is sufficient to
prove

(%) supp d[y] C Y,

for any v € K{G} and any d € Dy =) D[n, THy|. We will prove this in five steps
using induction on n for n the smallest index with d € Din, THy).
STEP 1. Assume that d = z'u € Hy, u € U and that v = > =k € K{G},

i<A

0 # k; € K for all ordinals i < A. )

Then dy = Y % (uk;) for ztuz® = ztu; € G, u; € U. Hence, suppd[y] =

i<h

suppdy = {z% | i < A} = {Va(z®) | i <A} C {V,(2%) | g € Hy, i <A} =Y,.
STEP 2. The inclusion (%) follows immediately for d € 7.
STEP 3. Assume that a,b € Dy with suppa[y]U suppb[y] C ¥, for any v € K{G}.
Then supp (a+b)[v] © suppa[y]U supp bly] C Y. Further, V,(Y,) = ¥, for g € Hy,
and hence

supp (a - B)[7] € Yoy = |J Vo(suppb)) € | Vo(¥y) = ¥,
gEH) gEH)

STEP 4. It follows from Steps 1-3 that the statement (%) is true for all d € THj, =
D[0, THy] and any v € K{G}.
STEP 5. Assume that (%x) is true for elements d € Djn — 1, THy] for some n > 1
and all v € K{G}.

Let d = p~' € D[n, THy] with p € Dln — 1, TH]. We consider 8 = d[y] and
decompose (3 into the sum § = By + §; with supp (5) C Y, and supp (6;) Y, = 0.

Then v = p[A] = plfo] + p[G1].
By the induction hypothesis, it follows that

supp (p[fa]) € |J Ve(suppBo) € | Vo(Yy) € V5.
gEH;, gEH;,

Hence, supp (p[51]) = supp (v —p[Ba]) C supp YU supp (p[fg)) C ¥, On the other
hand, supp (p[61]) C Yj, since p € Dfn — 1, TH). If we assume that there exists
an element h in supp (p[51]), then, on the one hand,

h=Vgh' forsome g€ Hy andsome k'€ supp(y)
and on the other hand,
h=Vy(h") forsome g’ € H, andsome h" ¢ supp(f).

This implies h" = V{y)-14(k’') € ¥, N supp (/1) = 0, a contradiction that shows
that supp (1) is empty and supp (8) = supp (3) C Y.

The ring D[n, THy] is generated by D[n — 1, THy] and all elements p~* for
p € Dln — 1, TH]\{0}, and it now follows by an application of Step 3 that (%)
is true for all elements in D[n, T'Hy] which completes the induction and proves the
lemma (see also: [11]). O

We now return to the proof of Theorem 4.4.
Let d be a nonzero element in Dj. Since D, C D and S is associated with the
cone IP, the element d can be decomposed as follows:
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(see Definition 1.2). It follows from (*) in Lemma 4.5 with v = 2° that
supp d[z?] € U Vy(2%) = U 2(g).

gEH gEH)

Hence, v(d[z?]) = Vi(a%) = Vit 0 V;,,(2°) = Vie(2®) = ' since m € U(S), and
hence zf = v(g), ¢ = z*u, u € U for some element g € H.

It follows that d = (z*u)(u~'m) for ztu € Hy and v'm = (z'u)"'d € Dg.
Further, u='m € U- U(S) N Dy = U(Sk), since U C U(S) and SN Dy, = Sk.

Applying the same arguments to the element d~! = 2% ¢!, we conclude that
there exists an element ¢' € Hy, with ¢/ = 2~ w for some w € U. Hence, we obtain
a decomposition

d =@ ‘w(w ¢ ) for wlg?=(¢")"1d! e D.NUS)=U(Sk)
This proves the first half of condition (ii) in Definition 1.2, if we write d =
(qu)(w™'a*), qw € U(Sk), w'a¥ = (¢")" € Hi. It remains to prove the equality

PurtuPe = Pow ot Py.

Let wlzt =zt u” for some w” € U and t” € R. Since § is associated with P,
it follows that
Pzt P = Pz’ P.

Therefore,
PiztuPy = Pyx'u(P N Hy) = PP Hy,
= P2tP 1 Hy, = Pzt PN Hy = P2t PN Hy
= Pzt u"PN Hy = Pra’ v P
= Pkw_lﬂ:thk
where we used Lemma 3.4 for the third and sixth equality.
This completes the proof of Theorem 4.4. O

Corollary 4.6. The chain domain Sy is exceptional of rank one and of type (Ck).
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